-
Posts
2903 -
Joined
-
Last visited
-
Days Won
5
LazyHippo last won the day on July 22
LazyHippo had the most liked content!
Contact Methods
-
Discord
=F|A=LazyHippo#8362
Profile Information
-
Alias
LazyHippo
-
Admin
18
-
Server
Silent #1
-
Gender
Male
-
TB
4729870
-
Location
Mexico
Notes
-
T-M
29-17
Recent Profile Visitors
LazyHippo's Achievements
-
-
We were expecting too much of it, and that maybe was the reason we think this movie was so bad to watch, I also agree has lack of plot and trend, the encounter with Harley Quinn starts fantastic but it only takes you to nothing regarding the story which is the audience of the legal trials and a musical show.
-
Comet Tsuchinshan-ATLAS seen over Whippoorwill Hill, in Bloomington, Indiana on Oct. 16, 2024. (Image credit: Josh Dinner/Future) Have you seen comet Tsuchinshan-ATLAS yet? If you've not been able to glimpse the bright, icy space rock that's traveled from the edge of the solar system, it's not too late. But you need to see it soon. The coma and long tail of comet Tsuchinshan-ATLAS, also called C/2023 A3 (Tsuchinshan–ATLAS), is currently shining at magnitude +0.5. That's well within the grasp of the human eye. It's likely now past its best, but only just, and will likely remain a naked-eye object after sunset in the west until, and possibly through, the weekend. After that, it will likely be visible only in binoculars for the rest of October and into early November. A telescope will be needed after that. To see the comet from the northern hemisphere, look west from about 45 minutes after sunset; it's just below and to the right of Arcturus, a bright red giant star in the constellation Boötes. (Image credit: Josef Pittner - Shutterstock.com) Seeing in twilight is challenging. Happily, comet-gazers can by now wait for up to two hours after that to catch it in a darker sky. There are caveats because its visibility is a balance between the trifecta of its intrinsic brightness, the darkness of the sky it's in, and moonlight — but it's inevitably getting dimmer as it gets physically more distant despite now being placed higher in the night sky. Comet Tsuchinshan-ATLAS is appearing higher up in the western sky each night, and remaining in the sky for longer, but since it's getting farther from Earth and the sun each night, it's getting fainter.
-
Los Fabulosos Cadillacs 'S' for next one
-
CCR - Bad Moon Rising 'L' for next
-
Entheogenic - Asherah This psychedelic ambient project is a bomb, I remember my rave experiences when I listen to this music, in this case leaves you calm and released exploring different sounds.
-
2024 Southeast Pacific and Atlantic hurricane season
LazyHippo replied to LazyHippo's topic in Report News
-
-
-
Images of the Red Planet taken by NASA's Mars Reconnaissance Orbiter. (Image credit: NASA/JPL-Caltech/University of Arizona.) The conditions needed for photosynthesis to occur on Mars could exist beneath the surface of dusty ice at the Red Planet’s mid-latitudes, new research suggests. Photosynthesis is the process by which living things like plants, algae and cyanobacteria create chemical energy. It requires water and light to proceed and creates the majority of the oxygen in Earth's atmosphere. The new study suggests that a thick enough layer of ice on Mars could filter out harsh radiation from the sun but also allow enough sunlight through for photosynthesis, creating so-called "radiative habitable zones." Just as photosynthesis needs just the right light to proceed, these results must be viewed in the right light. While they don't suggest that life currently exists on Mars or has ever existed in the history of the Red Planet, the results do give scientists engaging in this ongoing search an idea of where to look. "We are not stating we have found life on Mars, but instead we believe that dusty Martian ice exposures in the mid-latitudes represent the most easily accessible places to search for Martian life today," research leader Aditya Khuller Postdoctoral Research Fellow at NASA's Jet Propulsion Laboratory told Space.com. Both Earth and Mars exist within the so-called "habitable zone" of the sun, the region around a star in which temperatures are right to allow liquid water to exist on a planet's surface. Yet, while 71% of Earth's surface is covered in liquid-water oceans, Mars appears to be a mostly dry landscape. Observations from Mars missions such as the Curiosity and Perseverance rovers have shown that this wasn't always the case. Geological features explored by these robots, such as dry lake beds and river tributaries, indicate that liquid water ran across the vistas of the Red Planet billions of years ago. Additionally, missions flying over Mars, such as NASA's Mars Reconnaissance Orbiter (MRO), have found water ice on Mars, often in unexpected regions. Scientists think Mars lost its liquid water billions of years ago when its magnetic field sputtered out (Earth's magnetosphere is still going strong) and its atmosphere was mostly stripped away. This meant there was little to prevent evaporating water from being lost to space. The lack of a thick atmosphere also means that modern Mars is bombarded by harsh ultraviolet radiation from the sun, which is deadly to living things and destroys the complex molecules needed for life. An image from NASA’s Mars Reconnaissance Orbiter of several gullies in the Martian region Terra Sirenum. (Image credit: NASA/JPL-Caltech/University of Arizona.) "Unlike Earth, Mars lacks a protective ozone shield, so there is 30% more harmful ultraviolet radiation at the surface in comparison with our planet," Khuller said. "Thus, on Mars, the areas where photosynthesis could occur are more likely to be within dusty ice because the overlying dusty ice blocks the harmful ultraviolet radiation at Mars’ surface, and liquid water is highly unstable at the surface of Mars due to its dry atmosphere." Using computer simulations, the team found that dusty Mars ice can melt from within, with overlying ice protecting this shallow subsurface liquid water from evaporating into the dry Martian atmosphere. "So, the two key ingredients for photosynthesis can be present within dusty Martian ice in the mid-latitudes," Khuller added. "Photosynthesis requires adequate amounts of sunlight and also liquid water to occur. Two previous independent simulations of dense Martian snow found that melting below the surface can occur in the Martian mid-latitudes today if small amounts of dust (less than 1%) are present within the snow. "By discovering dusty ice exposed within buried dusty snowpacks associated with Martian gullies a few years ago, there is a mechanism for them to melt below the surface to form shallow subsurface liquid water." An image from NASA’s Mars Reconnaissance Orbiter of a gully in the Martian region Dao Vallis. (Image credit: NASA/JPL-Caltech/University of Arizona.) Khuller explained that the team found that, for the exposed dusty ice, overlying ice can block the harmful ultraviolet radiation at Mars’ surface. This ice also allows enough solar radiation to penetrate below the ice surface to allow photosynthesis to occur. The depths at which these radiative habitable zones exist depend on the amount of dust within the ice. The team's simulations showed that very dusty ice would block too much sunlight. However, ice with 0.01% to 0.1% dust would allow a radiative zone to exist at a depth of between 2 inches and 15 inches (5 to 38 centimeters). Less "polluted" ice would allow for the existence of a deeper and wider radiative zone at a depth of between 7 feet and 10 feet (2.2 to 3.1 meters). The team thinks that the polar regions of Mars, where the majority of its ice is found, would be too cold for these radiative habitable zones to exist because of a lack of subsurface melting. Such melting would be more likely to occur at mid-latitude areas of the Red Planet. The team's theory has some support, in the form of observational evidence coming not from Mars but from our planet. "I was surprised to find out that there are potentially similar analogs for life within ice on Earth that contains dust and sediment," Khuller added. "These are called 'cryoconite holes' and form when dust and sediment on top of the ice melt into the ice because it is darker than the ice." Once within the ice every summer, the researcher continued, liquid water forms around the dark dust inside the ice due to heating from sunlight, even if the ice above is frozen, like a lid. This happens because the ice is translucent, allowing sunlight to penetrate below the surface. "People have found microorganisms that live in these shallow subsurface habitats on Earth," Khuller said. "The microorganisms typically go dormant in the winter when there is not enough sunlight to form liquid water within the dusty ice." Evidence from Earth: Holes formed by cryoconite on Alaska’s Matanuska Glacier in 2012. (Image credit: Kimberly Casey) Of course, none of this means that photosynthetic life exists on Mars or ever did. But it is intriguing and could spur further investigation of the possible existence of subsurface radiative habitable zones on the Red Planet. "I am working with a team of scientists to develop improved simulations of if, where, and when dusty ice could be melting on Mars today," Khuller concluded. "Additionally, we are recreating some of these dusty ice scenarios in a lab setting to examine them in more detail."
-
Aerosmith - Baby, please dont go! Great band, remember my high school parties with this. 'H' for next
-
2024 Southeast Pacific and Atlantic hurricane season
LazyHippo replied to LazyHippo's topic in Report News
Last few days hurricane Kirk find out his path towards Europe, northern France, Netherlands and Belgium by half of next week will arrive as a tropical storm. Hurricane Leslie will follow Kirk and Milton will make landfall in Florida as a major hurricane also by Wednesday. Milton just now category one hurricane: -
-
About Us
We are glad you decided to stop by our website and servers. At Fearless Assassins Gaming Community (=F|A=) we strive to bring you the best gaming experience possible. With helpful admins, custom maps and good server regulars your gaming experience should be grand! We love to have fun by playing online games especially W:ET, Call of Duty Series, Counter Strike: Series, Minecraft, Insurgency, DOI, Sandstorm, RUST, Team Fortress Series & Battlefield Series and if you like to do same then join us! Here, you can make worldwide friends while enjoying the game. Anyone from any race and country speaking any language can join our Discord and gaming servers. We have clan members from US, Canada, Europe, Sri Lanka, India, Japan, Australia, Brazil, UK, Austria, Poland, Finland, Turkey, Russia, Germany and many other countries. It doesn't matter how much good you are in the game or how much good English you speak. We believe in making new friends from all over the world. If you want to have fun and want to make new friends join up our gaming servers and our VoIP servers any day and at any time. At =F|A= we are all players first and then admins when someone needs our help or support on server.