LazyHippo Posted January 6 Posted January 6 'True' color images show the estimated real hues of two solar system planets. Uranus is on the left while Neptune is on the right. (Image credit: Patrick Irwin) In the summer of 1989, from a remote expanse of our solar system where sunlight is merely a tepid glow, NASA's Voyager 2 spacecraft radioed to Earth humankind's very first images of Neptune. The pictures revealed the sun's outermost planet was a stunning, deep blue orb. In contrast, Uranus, Neptune's planetary neighbor and the first to be discovered with a telescope, appeared noticeably paler. Both seemingly twin worlds have a lot in common. They're roughly the same size, almost equally massive and are both enveloped with deep atmospheres made of similar materials. So why were the two orbs different shades of blue? This is a question that has puzzled scientists for decades. Now, however, a fresh analysis of Voyager 2's images show both ice giants are in fact a similar shade of greenish blue, which is the "most accurate representation yet" of the planets' colors, the new study finds. How could we miss this? Back in the late 1900s, the images Voyager 2 recorded of Uranus and Neptune were in single colors combined to create composite images that showed the planets to be cyan and azure, respectively. While Uranus' published pictures were processed close to its true color, early Neptune images had been "stretched and enhanced" to display its clouds, bands and winds, "and therefore made artificially too blue," study lead author Patrick Irwin, a planetary physicist at the Oxford University in the U.K., said in a statement. "Even though the artificially-saturated color was known at the time amongst planetary scientists — and the images were released with captions explaining it — that distinction had become lost over time." To resolve the misconception, Irwin and colleagues used new images from NASA's Hubble Space Telescope and European Space Agency's Very Large Telescope, whose instruments capture a rich spectrum of colors in each pixel, so processing them determined the "true apparent colors" of Uranus and Neptune. Then, the team revisited Voyager 2's images and rebalanced them in line with the new data, showing both planets are actually similar shades of blue. The color comes from a layer of methane in the planets' atmospheres, which absorbs red color from the sun's light. Uranus is slightly whiter, the new study finds, possibly because its somewhat "stagnant, sluggish" atmosphere permits the methane haze to accumulate, which reflects red portions of sunlight to a greater extent than Neptune does. Uranus as seen by HST/WFC3 from 2015-2022. During this sequence the north pole, which has a paler green color, swings down towards the Sun and Earth. In these images the equator and latitude lines at 35N and 35S are marked. (Image credit: Patrick Irwin) Voyager 2/ISS images of Uranus and Neptune released shortly after the Voyager 2 flybys in 1986 and 1989, respectively, compared with a reprocessing of the individual filter images in this study to determine the best estimate of the true colors of these planets. (Image credit: Patrick Irwin) The presence of amassed methane ice particles may also explain why Uranus changes its color slightly during its 84-year orbit around the sun. Images recorded between 1950 and 2016 by the Lowell Observatory in Arizona show the planet appears greener during its solstices — when one of its poles points toward the sun — and bluer during equinoxes, when the sun shines directly above its equator. By comparing brightness of Uranus' poles to its equatorial regions in these images, Irwin and his team concluded methane is likely half as abundant near poles than at the equator, which accounts for the changing colors. "The misperception of Neptune's color, as well as the unusual color changes of Uranus, have bedeviled us for decades," said Heidi Hammel of the Association of Universities for Research in Astronomy, who is not affiliated with the new study. "This comprehensive study should finally put both issues to rest." This research is described in a paper published Thursday (Jan. 4) in the journal Monthly Notices of the Royal Astronomical Society. Quote
amovos Posted January 15 Posted January 15 (edited) Very interesting! Thanks for sharing this detailed insight. It is a fascinating how scientists are able to translate "photographs" taken millions of km away by remote satellites into realistic pictures of how we would perceive these far-away planets by the naked eye. Edited January 15 by amovos Quote
LazyHippo Posted January 16 Author Posted January 16 For sure is interesting, and in research by us to reveal updated information from our Solar System. Uranus is an ice giant made of methane, hydrogen and helium (incredible combustibles), with a solid 'Earth's size' metalic core. Neptune is similar but with water and ammonia elements, also with metalic core. In a distant future I see humans getting natural resources from this planets 😄 1 Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.